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Abstract— In this paper the implementation of a correlation-
based navigation algorithm, based on an unsupervised leaimg
paradigm for spiking neural networks, called Spike Timing
Dependent Plasticity (STDP), is presented. The main charser-
istic of the learning technique implemented is that it allovs the
robot to learn high-level sensor features, based on a set ofbic
reflexes, depending on some low-level sensor inputs. The gd=
to allow the robot to autonomously learn how to navigate in an
unknown environment, avoiding obstacles and heading towak
or avoiding the targets (on the basis of the rewarded action)

This algorithm was implemented on a bio-inspired hybrid
mini-robot, called TriBot. The peculiar characteristic of this
robot is its mechanical structure, since it allows to join tte
advantages both of legs and wheels. In addition, it is equipgd
with a manipulator that allows to add new capabilities, like
carry objects and overcome obstacles.

Robot experiments are reported to demonstrate the poten-
tiality and the effectiveness of the approach.

|I. INTRODUCTION

be responsible for anticipation abilities [2]. In partiayl

a function ascribed to MBs consists in the enhancement
of causal relations arising among the insect basic behav-
iors, by exploiting the temporal correlation between senso
events. Information storage and retrieval in the case of
the olfaction sense are demonstrated in [2], [3]. Another
interesting element, that can be used for the development
of a real time control architecture for autonomous robats, i
the biological mechanism of spike-timing-dependent jdast

ity (STDP). This learning algorithm, initially is a suitabl
learning paradigm for spiking networks and can be used to
model synaptic plasticity. In particular, in this applicat, a
Spiking Neural Network (SNN) has been used to implement
the navigation control algorithm for TriBot, the bio-inspd
hybrid robot used as a test-bed [4]. Spiking neural networks
fall into the third generation of neural network models, gbhi
explicitly take into account the timing of inputs, incraasi

T is desirable that robots would be, as much as possiblghe level of realism in a neural simulation. The network
autonomous and self-sufficient; this requires a contréhput and output are usually represented as series of spikes

algorithm that allows the robot to navigate through theSNNs have an advantage of being able to process information
environment on the basis of the information acquired frorin the time domain [5]. Moreover, essential features of
it. Since the environment is unknown and in continuouaeurons and their interconnections can be easily programme
evolution, it is not possible to a priori program the behaviointo a computer, which then simulates the brain’s learning
of the robot. Therefore, the control algorithm has to b@rocesses. Starting from the experience, that can be a prior
dynamic in order to allow the robot to change its behaviogiven or can be built during time, with or without human
depending on the situation. The idea is, in fact, not tgupervision, a neural network is therefore able to recagniz
create, at least at this stage, an internal representafionimages, sounds, shapes and so on.
the environment, but to learn a general method that allows Associative learning is a basic principle in nature. In
the robot to reach specific objects, that represent thettargthe proposed application, on the basis of recent results on
interacting continuously with the environment. At this aimthe olfactory learning process in the MBs acquired from
it is necessary that the robot is equipped with differentlkin experiments in the Drosophila melanogaster [6], the |earni
of sensors, like contact, vision and hearing sensors. process is inspired by the Classical Conditioning paragigm
To implement robust and effective control algorithmswhich is a reflexive or automatic kind of learning in which
neural networks are often used [1]. These ones have seaminitially neutral stimulus acquires the capacity to evak
an outburst of attention over the last few years and amesponse that was originally evoked by another stimulus [7]
being successfully applied across a notable range of proble The original model of Classical Conditioning was most
domains, in areas as diverse as finance, physics, engigeeriiamously demonstrated by lvan Pavlov [8]. It begins with the
geology and medicine. They allow, in fact, to process inforebservation that certain stimuli, referred to as uncoadét
mation in a living-being-like manner, i.e. learning frometh stimuli (US), reliably yield an unconditioned response {UR
experience. Interesting information for the network desigWwhen a neutral stimulus is paired with the US, it may
process can be gathered from the insect world. In insectdso yield the same response through conditioning. Under
the basic locomotion abilities are generated typicallyhimit these conditions the neutral stimulus is referred to as the
the thoracic ganglia, while higher parts of the brain haveonditioned stimulus and the response to the CS is the
the different role to modulate the basic behaviors to giveonditioned response (CR). One important characterigtic o
rise to more complex capabilities. For example, the insedbe Classical Conditioning is that, if the conditioned and
Mushroom Bodies (MBs) neural structure is thought tanconditioned stimuli are not paired for a given number
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of trials an organism will stop exhibiting the conditioned
response.
Similarly to what happens in nature, connections between



neurons are not a priori fixed, but they change during theharacteristics of the TriBot robot are then presented. The
experiment, getting stronger or weaker on the basis of tistructure of the neural architecture implemented in this
stimuli coming from the external environment. This charapplication is analyzed in Section IV and finally, in Section
acteristic is the base of the learning algorithm used in thig, experimental results show as the implementation of an un-
application. Synaptic plasticity plays, in fact, centralles for  supervised learning structure, like STDP, allows the rdbot
memory, learning, and the development of the brain. Morearn how to autonomously navigate through the environment
precisely, a synapse is strengthened if the postsynapke spapproaching or avoiding targets.
follows the presynaptic spike. This synaptic modificatien i
called long-term potentiation. On the other hand, a synapse
is weakened if the presynaptic spike follows the postsyinapt In this section the mathematical model used to simulate
spike, which is called the long term depression [9]. the spiking neuron behavior and the STDP rule applied to
In literature, various architectures, based on spikingaleu implement the learning algorithm are presented.
networks, have been implemented to control the navigation There exist different neural dynamical properties of bi-
of mobile robots [10], [11], [12]. ological neurons, such as spiking behaviors (tonic, phasic
In [10] the relation between neural dynamics and robdtnd chaotic spiking) and bursting behavior [14]. All of taes
behavior is studied. The aim there was to develop selR€haviors can be simulated using the neuron model proposed
organizing algorithm of spiking neural networks, based oRY 1zhikevich. This mathematical model is based on a system
genetic algorithms, applicable to autonomous robots. In @ two first order differential equations [15]:
similar way, in [11] a novel mechanism for controlling b= 0.040% + 50 + 140 — u + I

Il. SPIKING NEURONS ANDSTDPRULE

autonomous mobile robots that is based on spiking neural . (1)
networks (SNNSs) is introduced. Also in this case an adaptive = afbv - u)

genetic algorithm (GA) is used to evolve the weights ofvith the auxiliary after-spike resetting:

the SNNs online using real robots. They demonstrate that

the adaptive GA, using adaptive crossover and mutation if v>0.03, then{ Z:Zer (2)

probabilities, converges in a relatively short time intdrv

in a small number of generations and produced a goodwherev andu are dimensionless variables, am, ¢ and
solution that outperformed the standard GA. The evolved are dimensionless parameters. The variablepresents
SNN controller also provided an acceptable solution to thdéie membrane potential of the neuron amdepresents a
wall following problem even when compared with a Fuzzynembrane recovery variable. Synaptic currents or injected
controller benchmark; the SNN controller gave a smoothelc-currents are delivered via the variatleThe time unit is
and better response. ms.

Once again, in [12] a spiking neural network (SNN) is The various behaviors of the neuron are obtainable varying
used for behavior learning of a mobile robot in a dynamighe parameters, b, ¢ andd of the mathematical model.
environment including multiple moving obstacles, but iisth  In this application, we have chosen for all neurons the
case the learning method of SNN uses outputs from fuzgass | excitable model, whose main characteristic is that
controllers as teaching signals. the spiking rate is proportional to the amplitude of the

In this paper, the learning technique implemented is instimulqs. This chqracteristic allows to encode the stlhangt
spired by the Classical Conditioning and it is realized gsinOf the input into firing rate of the neurons. Such property is
a Spike Timing Dependent Plasticity (STDP) algorithm. Oufeally important since it gives the possibility to fuse s@nys
aim is to demonstrate how the robot is able to learn tgata atthe network input level. Here we have fixed 0.02,
recognize and, initially, to approach all the targets pnege  © = —0.1, ¢ = =55 andd = 6 (i. e. class | excitable neurons
the environment, which are represented by yellow and bidé4]), whereas the input accounts for both external stimuli
circles randomly placed on the ground, and then to learn {§-9- sensorial stimuli) and synaptic inputs.

avoid, for example, the blue ones, depending on the robotNeurons are, then, connected through synapses. Consid-
needs. ering a neurory which is connected witln neurons, and

The robot used for the experimental results is a moduldpdicating with, the instant in which a generic neuren

hybrid robot named TriBot. The TriBot structure is consti-CONNected to neurofj emits a spike, the following equation

tuted by two wheel-legs modules, an optimal solution fofePresents the synaptic input to neuron

walking in rough terrains and to overcome obstacles, iespir

by wheel-legs robots like Prolero, Asguard, RHex and Whegs (1) = 2 wije(t — ts) ©)
[13]. Moreover, a manipulator was added to improve the \\hare w;; represents the weight of the synapse from

capabilities of the system that is able to perform variouseroni to neuron;, while the functione(t) is given by
tasks: environment manipulation, object grasping, obstacy,s following formula:

climbing and others.
The paper is organized as follows: the learning technique v if t>0

t
and the STDP rules are initially described and the main £ :{ 0 if t<0 @



Equation (4) describes the contribution of a spike, from
a presynaptic neuron emitted @t 0. In this applicationr
has been fixed to = 5ms.

The Spike Timing Dependent Plasticity (STDP) [16] is
a bio-inspired learning technique which realizes an unsu-
pervised Hebbian learning scheme that modifies synaptic
weights according to their timing between pre- and post-
synaptic spikes. Therefore, weights changes according to
STDP rules [17]:

(a) AutoCAD design; (b) Manipulator down;

—ar (5)
A_e™ if At>0

Aw:{ Ae™ if At<O0

whereAt = t,,.. —tpos: IS the temporal difference between
the pre €,-.) and post £,,s:)-synaptic spikes. 1At < 0
and so the post-synaptic spike occurs after the pre-symapti
spike, thus the synapsis should be reinforced. Otherwise,
if At > 0 (the post-synaptic spike occurs before the pre-
synaptic spike), the synaptic weight is decreased by the
guantity Aw. The choice of the other parameters,( A,
7+ andr_) of the learning algorithm will be discussed below.
The term A, (A_) represents the maximuhw which is Fig. 1. Hybrid robot TriBot.
obtained for almost equal pre- and post-spiking times in
the case of potentiation (depression). While, the paraimete
7+ and 7_ determine the ranges of pre-to-post synaptic The presented learning mechanisms allow to increase the
inter-spike intervals over which synaptic strengthening a adaptation capabilities of the network to dynamically ajpan

(c) Manipulator up;

weakening occur. ing environment as it will be shown in the robot experiments.
The use of the synaptic rule described by equation (4)
may lead to an unrealistic growth of the synaptic weights. . TRIBOT RoBoT

Synapses, in fact, are functions of the time difference be- In this section, we briefly discuss about the mechanical and
tween pre- and post-synaptic spikes only, independently efectronic characteristics of TriBot, the autonomous reobi
the synaptic weight [17]. This no-weight-dependent STDRybrid robot used during the experiments.

requires imposing upper and lower bounds on the weights to The mechanical design of the robotic structure and the first
prevent unlimited weight growth [18], [19]. prototype are shown in Fig.1.

An additional problem also arises: multiple inputs can The robot has a modular structure, in particular it consists
activate different synapses of a neuron and when all of theof two wheel-legs modules and a two-arms manipulator.
get saturated at their upper bounds, this neuron will noehawhe two wheel-legs modules where chosen since they are
any discrimination ability. This problem can be solved byan optimal solution for walking in rough terrains and to
introducing constraints such as limiting the total synaptiovercome obstacles.
strength of a neuropy; w; ; = const [20]. For the excitatory  In fact, each leg of the robot TriBot has a peculiar shape, it
connections, we use a quadratic normalization rule: is an hybrid solution, the result of a study on the efficienty o

a wheel-leg hybrid structure; in this way the robot can have

the advantages of using legs, easily overcoming obstacles
6) and facing with rough terrains. On the other way, wheel-legs

have the shape of wheels, therefore the robot TriBot is able
where | is the number of the first layer neurons, while W iso have a quite smooth movement in regular terrains and so
a constant value used for normalization. to reach high speed.

Furthermore, some authors (see for instance [21], [22]) The two wheel-legs modules are connected using a passive
introduce a decay rate in the weight update rule. This swiuti joint with a spring that allows only the pitching movement.
avoids that the weights of the network increase steadil witThis joint facilitates the robot during climbing, in facteth
training and allows a continuous learning to be implementetiody flexion easily allows, in a passive way, to adapt the
In the simulations, the decay rate has been fixed tdth% robot posture to obstacles.
of the weight value and is performed each step. Thus, the Moreover, a manipulator, that consists of two legs/arms
weight values of all plastic synapses are updated accordiagth three degrees of freedom, was added to improve the
to the following equation: capabilities of the system that is able to perform various

tasks: environment manipulation, object grasping, olstac
w; j(t + dt) = 0.999w; ;(t) + Aw; (7) climbing and others. This manipulator is connected to the

wij(t) =W -w; ;(t —dt)/
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battery Lithium polymers

Higher obstacle overcoming 1.42 times wheel radiug
(using only wheels)
Higher obstacle overcoming 1.8 times wheel radius

Fig. 2. The whole neural architecture, composed by two swurk:

Obstacle Avoidance Network and Vision Target Detectionwdek. The
inputs of the first subnetwork are: Contact Left, ContacthRidistance
Left and Distance Right that represent the signals comiom fthe contact
and distance sensors. Respectively, the inputs of therVikioget Detection
Network are: Target Left Colourl and Target Right Colourattrepresent

central wheel-legs module through an actuated joint, whicHgnals coming from the target sensors (photo-resistaranes Vision Left

I th bot t t diff t fi ti CoIo_url, Vision Cent_ral Colourl, Vision Right Colourl thapr_e;e_nt _S|gna|s
allows the robo .O assume two ai eren. configural IOn%omlng from the vision sensor that analyzes the scene diyittie image
therefore the manipulator can be useful to improve locomanto three vertical visual areas. Solid-lines indicate dix@ynapses, while
tion capabilities when it is moved down Fig.l(b) (i.e. used adashed-lines are used for synapses subject to learning. drgereplicated
legs), whereas, when it is moved up it can make manipulatié%r the Colour2.

and grasp objects Fig.1(c) (i.e. used as arms).

robot are shown in Table I. sensory-neurons, inter-neurons and motor-neurons.

To control the robot, two boards based on ATmegal28, |y this case, the unconditioned stimuli (US) that cause
a low-power CMOS 8-bit microcontroller architecture con4yy ynconditioned response (UR) are the contact and the
nected using a serial bus and a graphical user interface)(GWArget sensors, whereas the conditioned stimuli (CS) @e th
have been developed. Besides, the computer manages @ance and vision sensors. As previously said, the respon
controls the robot behavior through a RF wireless XBegR to the US is a priori known, that means that the synaptic
module, that uses the standard ZigBee protocol. weights that connect US and UR do not change during the

The main role of the master control board is to control thgimuylation. On the contrary, the synaptic weights that estn
servomotors that actuate the four wheel-legs and is alsh uses and CR can change during the experiment according to
as a bridge between the PC and the other board mountedipa STDP rules previous described. They are initialized to
the manipulator. The manipulator is controlled by a similathe same value, selected such that, at the beginning of the
board, configured as slave, which is used to give the PWMmulation, no response is associated to these stimulinlyjai
signals to the six servomotors that actuate the manipulat@fe neural network here proposed, can be divided in two main
and to the servomotor that actuates the joint connectingocks, each of them deals with a different aspect of the

the manipulator with the rest of the robot. This board hagontrol algorithm: Obstacle Avoidance Network and Vision
also the important task to read data from the distributelarget Detection Network.

sensory system embedded in the manipulator. In fact, to useoth networks are then connected to the motor-neurons
the robot as test bed for perceptual algorithms, a sensaphich control the robot movement. These neurons, in fact,
system is needed. In particular, on the manipulator, foygpresent the last layer of the network and they give thetinpu
distance sensors have been distributed for obstacle @etect;y the motors of the robot, in particular, if the right motor-

in order to make the system able to safely move in unknowfeyron emits more spikes than the left one, the robot will
environments and a series of micro-switches are used {gn on the left, and vice versa.
detect collisions and to grasp objects. The first block of the network has the task of managing
Moreover, the robot is equipped with a wireless camerge interaction between the robot and the environment. The
that can be used for landmark identiﬁcation, fO||0Wing mOVTnputS are Signa's Coming from the contact sensors, that
ing objects, and other higher level tasks. represent the unconditioned stimuli and from the distance
sensors that, instead, represent the conditioned stiimelle
contact sensors are simulated through a suitable threshold
To realize the control algorithm, a spiking neural archion the signals coming from the same distance sensors. As
tecture (Fig.2) has been used, that allows the robot to avasthown in Fig.2, all synaptic weights of this block of the
obstacles and to recognize and reach targets. The archgectnetwork have been a priori fixed. That means that the robot

IV. THE SPIKING NETWORK



is a priori able to avoid obstacles. The functional prineipl

is the following: if, for example, a left contact is detected
the left motor-neuron emits more spikes than the right one
and consequently the robot turns right. Moreover, distance
sensors work in the same way as contact sensors, but they
allow to avoid that the robot bumps against obstacles giving

the network, in advance, the right inputs in order to turn on, ] ] ] ]
Fig. 3. Environment used during the experiments. The arasahen filled

the Co_rreCt S'd.e' Since the rotation angle !S p_roportlooal fwith 3 yellow plus 3 blue targets. An obstacle has been adueeérmonstrate
the spikes emitted by the motor-neurons, it will be proporhat the robot structure guarantees the effectivenesseotdhtrol strategy

tional to the distance between the robot and the obstacl@o in more complex scenarios where climbing actions habe fperformed
This network here considered, already available as a basic
behavior for the robot, can also be learned autonomously as

discussed in [5]. of them depending on the changes in the reward response
Furthermore, the Vision Target Detection Network allowsbtained through the target sensors. This is also common
the robot to visually recognize and reach targets. The msuroin nature: insects can learn to associate specific odors to
of the sensory layer of this block are five per each detectddod, but they are also able to modify this association on
visual feature (in this case the color). In fact, in Fig.2, inthe basis of the environmental changes. In our experiment,
the sensory layer there are two sets of five neurons becaugeahe beginning both targets are rewarding and therefare th
there are two types of targets to be detected (other types@hbot learns to reach them; after this, the robot begins to
targets can be easily added). Also this block of the netwotke punished whenever it reaches one of the target (i.e. the
can be divided in two subnetworks: Target Detection anghrget represented by the blue circle), consequently thetro
Target Vision. The first one has as inputs the signals comingarns to avoid it having a repulsive behavior, forgettiag,
from the target sensors (photo-resistances) and it alloes tthe same time, the previously acquired attractiveness. The
robot to align itself with the target, when it is detected. Agorgetting capability is a natural consequence of the decay
shown in Fig.2, the synaptic weights connecting neurons @éte implemented into the STDP learning strategy: thisaalo
this subnetwork are fixed (solid-lines), in fact, they resem®  to cope with environmentally changing conditions, like the
the unconditioned stimuli. one described in this example. In a plausible scenario, a
The Vision Target subnetwork is constituted of thregobot could find a charging station and use it for some time.
neurons in the sensory layer and two in the inter layehfter that, the station could no longer be able to recharge
which are shared with the Target Detection Network. Théhe robot (for example for a failure). In this case the robot
input are signals coming from the visual sensor. Synaptghould be able, in a few trials, to detect the new condition,
weights connecting neurons of this subnetwork are variabferget the previously acquired association, in search of a
(dashed-lines) since the vision sensor represents foothwt r new, rewarding one. The strategy is implemented here by
the conditioned stimulus. Practically, the image captungd changing the robot association to that specific target, &t th
the camera is divided in three vertical sections, therefofeeginning, in fact, the robot is rewarded when it finds a blue
it is possible to individuate if there is a target and if itcircle, whereas in this new condition it is punished. This is
is on the left, right or in front of the robot. If the vision realized changing the sign to the synapses associated to the
sensor detects a target in a precise area of the image, theconditioned stimuli in the network.
correspondent neuron is excited and consequentially,ilsem In a strict biological perspective, in the insect Mushroom
spikes. Since the synaptic weights that connect the sensd#gdies two different pathways were found: one appetitive,
and the inter layers of this subnetwork are initialized te thoctopamine mediated, and one aversive dopamine depen-
same value, the robot has no response to this stimulus. Bdgnt [6]. As a consequence, these two paths are elicited
if a target is detected after that a neuron of the sensoAs a function of the external reward or shock signals. In
layer has emitted spikes, i.e. after a US neuron was exciteglyr implementation, we purposely simplified the structure
the implemented learning algorithm reinforces the symapticonsidering only one internal synaptic path connecting the
weight connecting these two neurons according to STDRrget sensory layer to the inter-neurons, and we enabled
rules previously described, while the other connectiors af switching between aversive and appetitive unconditioned
weakened. When, after a number of similar stimuli-responsgimuli by simply changing the sign of the fixed synapses
associations, this synaptic weight reaches a value trawsll between target and inter-neurons.
to excite the inter-neurons, the robot will be able to head
itself toward the target before detecting it through theear V. EXPERIMENTAL RESULTS
sensors. The robot experiments have been performed in the arena
In this application two kinds of targets have been useghown in Fig.3, with dimension 3mx2,2m, randomly filled
The aim is to demonstrate that, using a neural network basetth yellow and blue circles that, for the robot, represéat t
on the STDP learning technique, the robot initially leams ttargets.
approach both targets and then, it can learn to avoid oneDuring the learning phase the robot navigates in the



environment using only the reflex-based, inherited befhravio
that rely on contact sensors and short range target detector
sensors.

The learning procedure consists of several trials in which
the synapses subject to the STDP learning rule are updated.
In fact, while the robot navigates through the arena, it may
meet a yellow or blue circle in the cone of vision of the .
camera. It then chooses the circle whose area occupies the 1 T T T
most of the visual scene. If the identified object is yellow or controlstep
blue and, at the next control step, the robot detects a target
the corresponding neurons are excited and consequently the
synapse that connects them is reinforced, while the others

—-=-WO00Col1
° 1—WO01Col1
° W10Col1
——W11Col1
¢ |=-W20Coal1
+ W21Col1

(@

are weakened. All plastic weights are initialized to the sam 6 ~wooca2
value: w; ; = 3.464 in order that\/zf:()l w?;(t —dt) = 5 - Wiioon
. . . . ? . F -+-W20Col2
W whereW = 6 is the normalization factor. The learning a1 * W21Col2
parameters chosen are, = A_ = 0.05. %3 LA
Fig.4 shows the trend of the number of yellow and blue ERLRN
targets found by the robot and the correspondent learnable .
synaptic behaviors. L e e
. . 0 250 500 750 1000 1250 1500 1750 2000
A control step corresponds to a robot action that is control step
obtained on the basis of the spikes emitted by the motor-
neurons. For each control step the network elaborates the (b)

sensory inputs for 333ms.

In the first part of Fig.4(a) and Fig.4(b) the evolution of
the synapse values demonstrates how the robot learns to o
correctly interpret the preprocessed visual input. In,ftod 70 -
rewarding information coming from the target sensors aflow
the creation of the anticipative action of the targeting whe
one of the two targets is visible in the scene. This is evident
Fig.5, where the trajectories followed by the robot at ddfe
times during the experiment are reported. ‘

At the beginning of the experiment the robot navigates in %o w0 wn 0o a0 0 o 180 200
the environment driven by the obstacle avoidance network
(Fig.5(a)). In this case, when a target is found, by chanee (i
the robot passes through a colored circle on the ground), the
learning pro_cess starts to _mOdIfy the network dynarmcaeAft Fig. 4. Evolution of the network during the experiment; (aatnable
about 30 minutes of running, the robot improved its navigaweights relative to the yellow target; (b) learnable weightlated to the
tion skills, orienting its trajectories toward both ye||mmd blue target. At control step 800 the rewarded action astmtim_ th_e blue
blue targets, detected through the camera (Fig 5(b)rAfle SI3%4 = changed and therefore e rabot sars to learuoal & (0
minutes the US coming from the target sensor associated to
the blue targets change from rewarding to punishing. Inserm
of the network structure in Fig.2 the change corresponds to
a modification of the association between the target left affimber of retrievals increases for both targets, while & th
right Colour2 inputs and the corresponding inter-neuron§e€cond part of the experiment the further number of retdeve
The two inputs are exchanged: this corresponds to considdpe targets starts to decrease since the robot have learned
the stimulus as aversive instead of attractive. The efféct & avoid them. Moreover, thanks to the hybrid structure of
the new environmental condition is perceived by the networfe system, the learned behavior can be applied also to
that changes its dynamics. The learning of the new conditigRore complex environment, for instance where obstacles
is visible in Fig.4(b) where the synapsis related to the blugre included (see Fig.5(c)). In this situation, the robat ca
targets begin to change (after control step 800) producingaésociate to the recognized obstacle a climbing action, tha
modification of the robot behavior, as shown in Fig.5(c). Th& performed using the frontal manipulator as additiongsle
robot, after 30 minutes from this change, is able to collec€€ [25] for more details.
only the yellow targets avoiding the blue ones that are no The obtained results show that the robot is able to learn
more rewarding. The performance of the system are alsorrelation between visual sensory stimuli and target@®sns
reported in Fig.4(c), where the cumulative number of targestimuli in various circumstances, allowing to cope with
found is reported. At the beginning of the experiment theynamically changing environment, exploiting the dynamic

Number of targets found
w 5 0 o
& 8 8 3
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on the right) to inter-neurons (i.e. VISLN2 and VISRN2 in
Fig.6(a)), but only when a target is detected by the right
low level sensor (TRN1Coll) the corresponding inter-nauro
(VISLNZ2) is excited and therefore, since the inter-neuran a
directly connected to the motor-neurons, the robot turns on
the right. Whereas, after the learning phase, as it is shown
in Fig.6(b) and in Fig.6(c), the robot has learnt that, when i
sees a yellow target on the right and therefore the V2N1Coll
neuron emits spikes (Fig.6(b)), it has to turn on the right, i
fact the VISRN2 neuron emits more spikes than the VISLN2
one. After this event, the robot sees the target in front of it
(V1IN1Col1 neuron emits spikes) and therefore a forward
movement is executed until the target is reached (TLN1Coll
and TRN1Coll neurons emit spikes). A similar case happens
for the neurons related to the blue target (Fig.6(c)). Fynal

at the end of the simulation, the robot has learnt to avoid
blue targets. Fig.6(d), in fact, shows that, when a bluestarg
is detected, for example, on the left (V1IN1Col2 neuron
emits spikes), the robot turns on the right (VISLN2 neuron
emits more spikes than the VISRN2) and consequently the
robot does not reach the target: in fact, the TLN1Col2 and
TRN1Col2 neurons are not excited.

(®) Multimedia materials on the experiment are available on
line [4].

VI. CONCLUSIONS

In this paper a bio-inspired control algorithm for the
navigation of a mobile robot, based on Spiking Neural
Networks, have been discussed.

The purpose of the implemented algorithm is to allow the
robot to navigate avoiding obstacles and reaching or avgidi
specific objects that represent the targets for the robank
to the interaction with the environment.

The proposed neural structure functionally inspired by the
© olfactory learning in the MBs in insect has been applied to
control a bio-inspired hybrid robot, named TriBot.

Fig. 5. Trajectory followed by the robot captured throughaanera placed ; i~ _
on the roof: (a) trajectory at the beginning of the learnirmge (between The eXperlmental results show the eﬁICIenCy of the algo

[110,150] control steps) where the robot navigates in thir@mment basing [ithm. The system is able to learn the association among
only on the reflexive inherited behaviors that rely on contemsors and visual features and basic behaviors through the STDP rule

short range target detector sensors, reaching the targhtsfdhey are in  ; ; ; ;
its trajectory; (b) trajectory (between [628,749] contstéps) when it has in a reasonable time. The approach presented in this work

learnt to reach both the targets; (c)trajectories (betvi2668,1825] control Can provide efficient navigation control strategies wittyve
steps), when it has learnt to reach the yellow targets anddiniahe blue simple unsupervised learning mechanisms. Further works
ones; an obstacle has been added in the environment. will include new sensors and basic behaviors that will allow
to extend the neural architecture.
. . . ... _The learning structure is envisaged to be used within an
of the synapses and improving the robot basic Capab'“t'efﬁsect brain computational model to solve more complex

after a few trials. o ) tasks in a real life scenario.
Furthermore, the spiking processing performed by the

network is described in Fig.6 in which the spikes emitted by ACKNOWLEDGMENT
the neurons that determine the behavior of the robot during e authors acknowledge the support of the European

the simulation are shown. Each control step corresponds ¢ mmission under the project SPARK Il “Spatial-temporal

333ms of simulation in which the network elaborates thgiierns for action-oriented perception in roving robaitsih
sensory inputs. STDP allows to identify causal correl&ion,sact brain computational model”.

between the spikes emitted by two connected neurons. In

fact, it is possible to notice that, at the beginning of the REFERENCES

learning phase, the robot is not able to correlate the spikeg; w. a. Arbib, “The Handbook of Brain Theory and Neural Netks”,
emitted by the V2N1Coll neuron (yellow target detected  1995.
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Fig. 6. Behavior of the network during the simulation. Théep emitted
by the neurons responsible for the robot behavior are regoig) Spikes
emitted by the neurons related to the yellow colour during kbarning
phase (control step [119;124]). (b) Spikes emitted by theoes related to
the yellow colour (control step [520;528]) and (c) blue cofoontrol step
[540;546]) after the colour-target association has beewshed. (d) Spikes
emitted by the neurons related to the blue colour, when thetrbas learnt
to avoid the blue targets (control step [1702;1706]).
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