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Abstract— In this paper the implementation of a correlation-
based navigation algorithm, based on an unsupervised learning
paradigm for spiking neural networks, called Spike Timing
Dependent Plasticity (STDP), is presented. The main character-
istic of the learning technique implemented is that it allows the
robot to learn high-level sensor features, based on a set of basic
reflexes, depending on some low-level sensor inputs. The goal is
to allow the robot to autonomously learn how to navigate in an
unknown environment, avoiding obstacles and heading toward
or avoiding the targets (on the basis of the rewarded action).

This algorithm was implemented on a bio-inspired hybrid
mini-robot, called TriBot. The peculiar characteristic of this
robot is its mechanical structure, since it allows to join the
advantages both of legs and wheels. In addition, it is equipped
with a manipulator that allows to add new capabilities, like
carry objects and overcome obstacles.

Robot experiments are reported to demonstrate the poten-
tiality and the effectiveness of the approach.

I. I NTRODUCTION

I T is desirable that robots would be, as much as possible,
autonomous and self-sufficient; this requires a control

algorithm that allows the robot to navigate through the
environment on the basis of the information acquired from
it. Since the environment is unknown and in continuous
evolution, it is not possible to a priori program the behavior
of the robot. Therefore, the control algorithm has to be
dynamic in order to allow the robot to change its behavior
depending on the situation. The idea is, in fact, not to
create, at least at this stage, an internal representation of
the environment, but to learn a general method that allows
the robot to reach specific objects, that represent the target,
interacting continuously with the environment. At this aim,
it is necessary that the robot is equipped with different kinds
of sensors, like contact, vision and hearing sensors.

To implement robust and effective control algorithms,
neural networks are often used [1]. These ones have seen
an outburst of attention over the last few years and are
being successfully applied across a notable range of problem
domains, in areas as diverse as finance, physics, engineering,
geology and medicine. They allow, in fact, to process infor-
mation in a living-being-like manner, i.e. learning from the
experience. Interesting information for the network design
process can be gathered from the insect world. In insects,
the basic locomotion abilities are generated typically within
the thoracic ganglia, while higher parts of the brain have
the different role to modulate the basic behaviors to give
rise to more complex capabilities. For example, the insect
Mushroom Bodies (MBs) neural structure is thought to
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degli Studi di Catania, Italy (email:fparena,lpataneg@diees.unict.it).

be responsible for anticipation abilities [2]. In particular,
a function ascribed to MBs consists in the enhancement
of causal relations arising among the insect basic behav-
iors, by exploiting the temporal correlation between sensory
events. Information storage and retrieval in the case of
the olfaction sense are demonstrated in [2], [3]. Another
interesting element, that can be used for the development
of a real time control architecture for autonomous robots, is
the biological mechanism of spike-timing-dependent plastic-
ity (STDP). This learning algorithm, initially is a suitable
learning paradigm for spiking networks and can be used to
model synaptic plasticity. In particular, in this application, a
Spiking Neural Network (SNN) has been used to implement
the navigation control algorithm for TriBot, the bio-inspired
hybrid robot used as a test-bed [4]. Spiking neural networks
fall into the third generation of neural network models, which
explicitly take into account the timing of inputs, increasing
the level of realism in a neural simulation. The network
input and output are usually represented as series of spikes.
SNNs have an advantage of being able to process information
in the time domain [5]. Moreover, essential features of
neurons and their interconnections can be easily programmed
into a computer, which then simulates the brain’s learning
processes. Starting from the experience, that can be a priori
given or can be built during time, with or without human
supervision, a neural network is therefore able to recognize
images, sounds, shapes and so on.

Associative learning is a basic principle in nature. In
the proposed application, on the basis of recent results on
the olfactory learning process in the MBs acquired from
experiments in the Drosophila melanogaster [6], the learning
process is inspired by the Classical Conditioning paradigm,
which is a reflexive or automatic kind of learning in which
an initially neutral stimulus acquires the capacity to evoke a
response that was originally evoked by another stimulus [7].

The original model of Classical Conditioning was most
famously demonstrated by Ivan Pavlov [8]. It begins with the
observation that certain stimuli, referred to as unconditioned
stimuli (US), reliably yield an unconditioned response (UR).
When a neutral stimulus is paired with the US, it may
also yield the same response through conditioning. Under
these conditions the neutral stimulus is referred to as the
conditioned stimulus and the response to the CS is the
conditioned response (CR). One important characteristic of
the Classical Conditioning is that, if the conditioned and
unconditioned stimuli are not paired for a given number
of trials an organism will stop exhibiting the conditioned
response.

Similarly to what happens in nature, connections between



neurons are not a priori fixed, but they change during the
experiment, getting stronger or weaker on the basis of the
stimuli coming from the external environment. This char-
acteristic is the base of the learning algorithm used in this
application. Synaptic plasticity plays, in fact, central roles for
memory, learning, and the development of the brain. More
precisely, a synapse is strengthened if the postsynaptic spike
follows the presynaptic spike. This synaptic modification is
called long-term potentiation. On the other hand, a synapse
is weakened if the presynaptic spike follows the postsynaptic
spike, which is called the long term depression [9].

In literature, various architectures, based on spiking neural
networks, have been implemented to control the navigation
of mobile robots [10], [11], [12].

In [10] the relation between neural dynamics and robot
behavior is studied. The aim there was to develop self-
organizing algorithm of spiking neural networks, based on
genetic algorithms, applicable to autonomous robots. In a
similar way, in [11] a novel mechanism for controlling
autonomous mobile robots that is based on spiking neural
networks (SNNs) is introduced. Also in this case an adaptive
genetic algorithm (GA) is used to evolve the weights of
the SNNs online using real robots. They demonstrate that
the adaptive GA, using adaptive crossover and mutation
probabilities, converges in a relatively short time interval
in a small number of generations and produced a good
solution that outperformed the standard GA. The evolved
SNN controller also provided an acceptable solution to the
wall following problem even when compared with a Fuzzy
controller benchmark; the SNN controller gave a smoother
and better response.

Once again, in [12] a spiking neural network (SNN) is
used for behavior learning of a mobile robot in a dynamic
environment including multiple moving obstacles, but in this
case the learning method of SNN uses outputs from fuzzy
controllers as teaching signals.

In this paper, the learning technique implemented is in-
spired by the Classical Conditioning and it is realized using
a Spike Timing Dependent Plasticity (STDP) algorithm. Our
aim is to demonstrate how the robot is able to learn to
recognize and, initially, to approach all the targets present in
the environment, which are represented by yellow and blue
circles randomly placed on the ground, and then to learn to
avoid, for example, the blue ones, depending on the robot
needs.

The robot used for the experimental results is a modular
hybrid robot named TriBot. The TriBot structure is consti-
tuted by two wheel-legs modules, an optimal solution for
walking in rough terrains and to overcome obstacles, inspired
by wheel-legs robots like Prolero, Asguard, RHex and Whegs
[13]. Moreover, a manipulator was added to improve the
capabilities of the system that is able to perform various
tasks: environment manipulation, object grasping, obstacle
climbing and others.

The paper is organized as follows: the learning technique
and the STDP rules are initially described and the main

characteristics of the TriBot robot are then presented. The
structure of the neural architecture implemented in this
application is analyzed in Section IV and finally, in Section
V, experimental results show as the implementation of an un-
supervised learning structure, like STDP, allows the robotto
learn how to autonomously navigate through the environment
approaching or avoiding targets.

II. SPIKING NEURONS ANDSTDPRULE

In this section the mathematical model used to simulate
the spiking neuron behavior and the STDP rule applied to
implement the learning algorithm are presented.

There exist different neural dynamical properties of bi-
ological neurons, such as spiking behaviors (tonic, phasic,
and chaotic spiking) and bursting behavior [14]. All of these
behaviors can be simulated using the neuron model proposed
by Izhikevich. This mathematical model is based on a system
of two first order differential equations [15]:_v = 0:04v2 + 5v + 140� u+ I_u = a(bv � u) (1)

with the auxiliary after-spike resetting:

if v � 0:03, then

� v  
u u+ d (2)

wherev andu are dimensionless variables, anda, b, 
 andd are dimensionless parameters. The variablev represents
the membrane potential of the neuron andu represents a
membrane recovery variable. Synaptic currents or injected
dc-currents are delivered via the variableI . The time unit isms.

The various behaviors of the neuron are obtainable varying
the parametersa, b, 
 andd of the mathematical model.

In this application, we have chosen for all neurons the
class I excitable model, whose main characteristic is that
the spiking rate is proportional to the amplitude of the
stimulus. This characteristic allows to encode the strength
of the input into firing rate of the neurons. Such property is
really important since it gives the possibility to fuse sensory
data at the network input level. Here we have fixeda = 0:02,b = �0:1, 
 = �55 andd = 6 (i. e. class I excitable neurons
[14]), whereas the inputI accounts for both external stimuli
(e.g. sensorial stimuli) and synaptic inputs.

Neurons are, then, connected through synapses. Consid-
ering a neuronj which is connected withn neurons, and
indicating with ts the instant in which a generic neuroni,
connected to neuronj, emits a spike, the following equation
represents the synaptic input to neuronj:Ij(t) =Pwij"(t� ts) (3)

where wij represents the weight of the synapse from
neuroni to neuronj, while the function"(t) is given by
the following formula:"(t) = � t� e1� t� if t � 00 if t < 0 (4)



Equation (4) describes the contribution of a spike, from
a presynaptic neuron emitted att = 0. In this application�
has been fixed to� = 5ms.

The Spike Timing Dependent Plasticity (STDP) [16] is
a bio-inspired learning technique which realizes an unsu-
pervised Hebbian learning scheme that modifies synaptic
weights according to their timing between pre- and post-
synaptic spikes. Therefore, weights changes according to
STDP rules [17]:�w = ( A+e�t�+ if �t < 0A�e��t�� if �t � 0 (5)

where�t = tpre�tpost is the temporal difference between
the pre (tpre) and post (tpost)-synaptic spikes. If�t < 0
and so the post-synaptic spike occurs after the pre-synaptic
spike, thus the synapsis should be reinforced. Otherwise,
if �t � 0 (the post-synaptic spike occurs before the pre-
synaptic spike), the synaptic weight is decreased by the
quantity�w. The choice of the other parameters (A+, A�,�+ and��) of the learning algorithm will be discussed below.
The termA+ (A�) represents the maximum�w which is
obtained for almost equal pre- and post-spiking times in
the case of potentiation (depression). While, the parameters�+ and �� determine the ranges of pre-to-post synaptic
inter-spike intervals over which synaptic strengthening and
weakening occur.

The use of the synaptic rule described by equation (4)
may lead to an unrealistic growth of the synaptic weights.
Synapses, in fact, are functions of the time difference be-
tween pre- and post-synaptic spikes only, independently of
the synaptic weight [17]. This no-weight-dependent STDP
requires imposing upper and lower bounds on the weights to
prevent unlimited weight growth [18], [19].

An additional problem also arises: multiple inputs can
activate different synapses of a neuron and when all of them
get saturated at their upper bounds, this neuron will not have
any discrimination ability. This problem can be solved by
introducing constraints such as limiting the total synaptic
strength of a neuron

Pi w2i;j = 
onst [20]. For the excitatory
connections, we use a quadratic normalization rule:wi;j(t) =W � wi;j(t� dt)=vuutI�1Xi=0 w2i;j(t� dt) (6)

where I is the number of the first layer neurons, while W is
a constant value used for normalization.

Furthermore, some authors (see for instance [21], [22])
introduce a decay rate in the weight update rule. This solution
avoids that the weights of the network increase steadily with
training and allows a continuous learning to be implemented.
In the simulations, the decay rate has been fixed to the0:1%
of the weight value and is performed each step. Thus, the
weight values of all plastic synapses are updated according
to the following equation:wi;j(t+ dt) = 0:999wi;j(t) + �wi;j (7)

(a) AutoCAD design; (b) Manipulator down;

(c) Manipulator up;

Fig. 1. Hybrid robot TriBot.

The presented learning mechanisms allow to increase the
adaptation capabilities of the network to dynamically chang-
ing environment as it will be shown in the robot experiments.

III. T RIBOT ROBOT

In this section, we briefly discuss about the mechanical and
electronic characteristics of TriBot, the autonomous mobile
hybrid robot used during the experiments.

The mechanical design of the robotic structure and the first
prototype are shown in Fig.1.

The robot has a modular structure, in particular it consists
of two wheel-legs modules and a two-arms manipulator.
The two wheel-legs modules where chosen since they are
an optimal solution for walking in rough terrains and to
overcome obstacles.

In fact, each leg of the robot TriBot has a peculiar shape, it
is an hybrid solution, the result of a study on the efficiency of
a wheel-leg hybrid structure; in this way the robot can have
the advantages of using legs, easily overcoming obstacles
and facing with rough terrains. On the other way, wheel-legs
have the shape of wheels, therefore the robot TriBot is able
to have a quite smooth movement in regular terrains and so
to reach high speed.

The two wheel-legs modules are connected using a passive
joint with a spring that allows only the pitching movement.
This joint facilitates the robot during climbing, in fact the
body flexion easily allows, in a passive way, to adapt the
robot posture to obstacles.

Moreover, a manipulator, that consists of two legs/arms
with three degrees of freedom, was added to improve the
capabilities of the system that is able to perform various
tasks: environment manipulation, object grasping, obstacle
climbing and others. This manipulator is connected to the



TABLE I

TECHNICAL CHARACTERISTICS OFTRIBOT.

Weigh [Kg] 1,95
Dimensions [cm] 36x23x13

(length x height x width)
(manipulator up)
Dimensions [cm] 28x12x25

(length x height x width)
(manipulator down)

Velocity [cm/s] 46
Wheel-legs motors 5x Hitec HS-985MG
Manipulator motors 6x Hitec HS-82MG

Motors 10 x 3000 mAh@1.2V
batteries stylus AA

Control Board 1600 mAh@11.1V
battery Lithium polymers

Higher obstacle overcoming 1.42 times wheel radius
(using only wheels)

Higher obstacle overcoming 1.8 times wheel radius

central wheel-legs module through an actuated joint, which
allows the robot to assume two different configurations,
therefore the manipulator can be useful to improve locomo-
tion capabilities when it is moved down Fig.1(b) (i.e. used as
legs), whereas, when it is moved up it can make manipulation
and grasp objects Fig.1(c) (i.e. used as arms).

The main technical and mechanical characteristics of the
robot are shown in Table I.

To control the robot, two boards based on ATmega128,
a low-power CMOS 8-bit microcontroller architecture con-
nected using a serial bus and a graphical user interface (GUI)
have been developed. Besides, the computer manages and
controls the robot behavior through a RF wireless XBee
module, that uses the standard ZigBee protocol.

The main role of the master control board is to control the
servomotors that actuate the four wheel-legs and is also used
as a bridge between the PC and the other board mounted on
the manipulator. The manipulator is controlled by a similar
board, configured as slave, which is used to give the PWM
signals to the six servomotors that actuate the manipulator
and to the servomotor that actuates the joint connecting
the manipulator with the rest of the robot. This board has
also the important task to read data from the distributed
sensory system embedded in the manipulator. In fact, to use
the robot as test bed for perceptual algorithms, a sensory
system is needed. In particular, on the manipulator, four
distance sensors have been distributed for obstacle detection
in order to make the system able to safely move in unknown
environments and a series of micro-switches are used to
detect collisions and to grasp objects.

Moreover, the robot is equipped with a wireless camera
that can be used for landmark identification, following mov-
ing objects, and other higher level tasks.

IV. T HE SPIKING NETWORK

To realize the control algorithm, a spiking neural archi-
tecture (Fig.2) has been used, that allows the robot to avoid
obstacles and to recognize and reach targets. The architecture

Fig. 2. The whole neural architecture, composed by two subnetwork:
Obstacle Avoidance Network and Vision Target Detection Network. The
inputs of the first subnetwork are: Contact Left, Contact Right, Distance
Left and Distance Right that represent the signals coming from the contact
and distance sensors. Respectively, the inputs of the Vision Target Detection
Network are: Target Left Colour1 and Target Right Colour1 that represent
signals coming from the target sensors (photo-resistances) and Vision Left
Colour1, Vision Central Colour1, Vision Right Colour1 thatrepresent signals
coming from the vision sensor that analyzes the scene dividing the image
into three vertical visual areas. Solid-lines indicate fixed synapses, while
dashed-lines are used for synapses subject to learning. They are replicated
for the Colour2.

here proposed is composed by three layers constituted by:
sensory-neurons, inter-neurons and motor-neurons.

In this case, the unconditioned stimuli (US) that cause
an unconditioned response (UR) are the contact and the
target sensors, whereas the conditioned stimuli (CS) are the
distance and vision sensors. As previously said, the response
UR to the US is a priori known, that means that the synaptic
weights that connect US and UR do not change during the
simulation. On the contrary, the synaptic weights that connect
CS and CR can change during the experiment according to
the STDP rules previous described. They are initialized to
the same value, selected such that, at the beginning of the
simulation, no response is associated to these stimuli. Mainly,
the neural network here proposed, can be divided in two main
blocks, each of them deals with a different aspect of the
control algorithm: Obstacle Avoidance Network and Vision
Target Detection Network.

Both networks are then connected to the motor-neurons
which control the robot movement. These neurons, in fact,
represent the last layer of the network and they give the input
to the motors of the robot, in particular, if the right motor-
neuron emits more spikes than the left one, the robot will
turn on the left, and vice versa.

The first block of the network has the task of managing
the interaction between the robot and the environment. The
inputs are signals coming from the contact sensors, that
represent the unconditioned stimuli and from the distance
sensors that, instead, represent the conditioned stimuli;here
contact sensors are simulated through a suitable threshold
on the signals coming from the same distance sensors. As
shown in Fig.2, all synaptic weights of this block of the
network have been a priori fixed. That means that the robot



is a priori able to avoid obstacles. The functional principle
is the following: if, for example, a left contact is detected,
the left motor-neuron emits more spikes than the right one
and consequently the robot turns right. Moreover, distance
sensors work in the same way as contact sensors, but they
allow to avoid that the robot bumps against obstacles giving
the network, in advance, the right inputs in order to turn on
the correct side. Since the rotation angle is proportional to
the spikes emitted by the motor-neurons, it will be propor-
tional to the distance between the robot and the obstacles.
This network here considered, already available as a basic
behavior for the robot, can also be learned autonomously as
discussed in [5].

Furthermore, the Vision Target Detection Network allows
the robot to visually recognize and reach targets. The neurons
of the sensory layer of this block are five per each detected
visual feature (in this case the color). In fact, in Fig.2, in
the sensory layer there are two sets of five neurons because
there are two types of targets to be detected (other types of
targets can be easily added). Also this block of the network
can be divided in two subnetworks: Target Detection and
Target Vision. The first one has as inputs the signals coming
from the target sensors (photo-resistances) and it allows the
robot to align itself with the target, when it is detected. As
shown in Fig.2, the synaptic weights connecting neurons of
this subnetwork are fixed (solid-lines), in fact, they represent
the unconditioned stimuli.

The Vision Target subnetwork is constituted of three
neurons in the sensory layer and two in the inter layer
which are shared with the Target Detection Network. The
input are signals coming from the visual sensor. Synaptic
weights connecting neurons of this subnetwork are variable
(dashed-lines) since the vision sensor represents for the robot
the conditioned stimulus. Practically, the image capturedby
the camera is divided in three vertical sections, therefore
it is possible to individuate if there is a target and if it
is on the left, right or in front of the robot. If the vision
sensor detects a target in a precise area of the image, the
correspondent neuron is excited and consequentially, it emits
spikes. Since the synaptic weights that connect the sensory
and the inter layers of this subnetwork are initialized to the
same value, the robot has no response to this stimulus. But,
if a target is detected after that a neuron of the sensory
layer has emitted spikes, i.e. after a US neuron was excited,
the implemented learning algorithm reinforces the synaptic
weight connecting these two neurons according to STDP
rules previously described, while the other connections are
weakened. When, after a number of similar stimuli-response
associations, this synaptic weight reaches a value that allows
to excite the inter-neurons, the robot will be able to head
itself toward the target before detecting it through the target
sensors.

In this application two kinds of targets have been used.
The aim is to demonstrate that, using a neural network based
on the STDP learning technique, the robot initially learns to
approach both targets and then, it can learn to avoid one

Fig. 3. Environment used during the experiments. The arena has been filled
with 3 yellow plus 3 blue targets. An obstacle has been added to demonstrate
that the robot structure guarantees the effectiveness of the control strategy
also in more complex scenarios where climbing actions have to be performed

of them depending on the changes in the reward response
obtained through the target sensors. This is also common
in nature: insects can learn to associate specific odors to
food, but they are also able to modify this association on
the basis of the environmental changes. In our experiment,
at the beginning both targets are rewarding and therefore the
robot learns to reach them; after this, the robot begins to
be punished whenever it reaches one of the target (i.e. the
target represented by the blue circle), consequently the robot
learns to avoid it having a repulsive behavior, forgetting,at
the same time, the previously acquired attractiveness. The
forgetting capability is a natural consequence of the decay
rate implemented into the STDP learning strategy: this allows
to cope with environmentally changing conditions, like the
one described in this example. In a plausible scenario, a
robot could find a charging station and use it for some time.
After that, the station could no longer be able to recharge
the robot (for example for a failure). In this case the robot
should be able, in a few trials, to detect the new condition,
forget the previously acquired association, in search of a
new, rewarding one. The strategy is implemented here by
changing the robot association to that specific target, at the
beginning, in fact, the robot is rewarded when it finds a blue
circle, whereas in this new condition it is punished. This is
realized changing the sign to the synapses associated to the
unconditioned stimuli in the network.

In a strict biological perspective, in the insect Mushroom
Bodies two different pathways were found: one appetitive,
octopamine mediated, and one aversive dopamine depen-
dent [6]. As a consequence, these two paths are elicited
as a function of the external reward or shock signals. In
our implementation, we purposely simplified the structure
considering only one internal synaptic path connecting the
target sensory layer to the inter-neurons, and we enabled
a switching between aversive and appetitive unconditioned
stimuli by simply changing the sign of the fixed synapses
between target and inter-neurons.

V. EXPERIMENTAL RESULTS

The robot experiments have been performed in the arena
shown in Fig.3, with dimension 3mx2,2m, randomly filled
with yellow and blue circles that, for the robot, represent the
targets.

During the learning phase the robot navigates in the



environment using only the reflex-based, inherited behaviors
that rely on contact sensors and short range target detector
sensors.

The learning procedure consists of several trials in which
the synapses subject to the STDP learning rule are updated.
In fact, while the robot navigates through the arena, it may
meet a yellow or blue circle in the cone of vision of the
camera. It then chooses the circle whose area occupies the
most of the visual scene. If the identified object is yellow or
blue and, at the next control step, the robot detects a target,
the corresponding neurons are excited and consequently the
synapse that connects them is reinforced, while the others
are weakened. All plastic weights are initialized to the same

value: wi;j = 3:464 in order that
qPI�1i=0 w2i;j(t� dt) =W whereW = 6 is the normalization factor. The learning

parameters chosen areA+ = A� = 0:05.
Fig.4 shows the trend of the number of yellow and blue

targets found by the robot and the correspondent learnable
synaptic behaviors.

A control step corresponds to a robot action that is
obtained on the basis of the spikes emitted by the motor-
neurons. For each control step the network elaborates the
sensory inputs for 333ms.

In the first part of Fig.4(a) and Fig.4(b) the evolution of
the synapse values demonstrates how the robot learns to
correctly interpret the preprocessed visual input. In fact, the
rewarding information coming from the target sensors allows
the creation of the anticipative action of the targeting when
one of the two targets is visible in the scene. This is evidentin
Fig.5, where the trajectories followed by the robot at different
times during the experiment are reported.

At the beginning of the experiment the robot navigates in
the environment driven by the obstacle avoidance network
(Fig.5(a)). In this case, when a target is found, by chance (i.e
the robot passes through a colored circle on the ground), the
learning process starts to modify the network dynamics. After
about 30 minutes of running, the robot improved its naviga-
tion skills, orienting its trajectories toward both yellowand
blue targets, detected through the camera (Fig.5(b)). After 40
minutes the US coming from the target sensor associated to
the blue targets change from rewarding to punishing. In terms
of the network structure in Fig.2 the change corresponds to
a modification of the association between the target left and
right Colour2 inputs and the corresponding inter-neurons.
The two inputs are exchanged: this corresponds to consider
the stimulus as aversive instead of attractive. The effect of
the new environmental condition is perceived by the network
that changes its dynamics. The learning of the new condition
is visible in Fig.4(b) where the synapsis related to the blue
targets begin to change (after control step 800) producing a
modification of the robot behavior, as shown in Fig.5(c). The
robot, after 30 minutes from this change, is able to collect
only the yellow targets avoiding the blue ones that are no
more rewarding. The performance of the system are also
reported in Fig.4(c), where the cumulative number of targets
found is reported. At the beginning of the experiment the

(a)

(b)

(c)

Fig. 4. Evolution of the network during the experiment; (a) Learnable
weights relative to the yellow target; (b) learnable weights related to the
blue target. At control step 800 the rewarded action associated to the blue
target is changed and therefore the robot starts to learn to avoid it; (c)
Cumulative number of yellow and blue targets found.

number of retrievals increases for both targets, while in the
second part of the experiment the further number of retrieved
blue targets starts to decrease since the robot have learned
to avoid them. Moreover, thanks to the hybrid structure of
the system, the learned behavior can be applied also to
more complex environment, for instance where obstacles
are included (see Fig.5(c)). In this situation, the robot can
associate to the recognized obstacle a climbing action, that
is performed using the frontal manipulator as additional legs,
see [25] for more details.

The obtained results show that the robot is able to learn
correlation between visual sensory stimuli and target sensors
stimuli in various circumstances, allowing to cope with
dynamically changing environment, exploiting the dynamic



(a)

(b)

(c)

Fig. 5. Trajectory followed by the robot captured through a camera placed
on the roof: (a) trajectory at the beginning of the learning phase (between
[110,150] control steps) where the robot navigates in the environment basing
only on the reflexive inherited behaviors that rely on contact sensors and
short range target detector sensors, reaching the targets only if they are in
its trajectory; (b) trajectory (between [628,749] controlsteps) when it has
learnt to reach both the targets; (c)trajectories (between[1668,1825] control
steps), when it has learnt to reach the yellow targets and to avoid the blue
ones; an obstacle has been added in the environment.

of the synapses and improving the robot basic capabilities
after a few trials.

Furthermore, the spiking processing performed by the
network is described in Fig.6 in which the spikes emitted by
the neurons that determine the behavior of the robot during
the simulation are shown. Each control step corresponds to
333ms of simulation in which the network elaborates the
sensory inputs. STDP allows to identify causal correlations
between the spikes emitted by two connected neurons. In
fact, it is possible to notice that, at the beginning of the
learning phase, the robot is not able to correlate the spikes
emitted by the V2N1Col1 neuron (yellow target detected

on the right) to inter-neurons (i.e. VISLN2 and VISRN2 in
Fig.6(a)), but only when a target is detected by the right
low level sensor (TRN1Col1) the corresponding inter-neuron
(VISLN2) is excited and therefore, since the inter-neuron are
directly connected to the motor-neurons, the robot turns on
the right. Whereas, after the learning phase, as it is shown
in Fig.6(b) and in Fig.6(c), the robot has learnt that, when it
sees a yellow target on the right and therefore the V2N1Col1
neuron emits spikes (Fig.6(b)), it has to turn on the right, in
fact the VISRN2 neuron emits more spikes than the VISLN2
one. After this event, the robot sees the target in front of it
(V1N1Col1 neuron emits spikes) and therefore a forward
movement is executed until the target is reached (TLN1Col1
and TRN1Col1 neurons emit spikes). A similar case happens
for the neurons related to the blue target (Fig.6(c)). Finally,
at the end of the simulation, the robot has learnt to avoid
blue targets. Fig.6(d), in fact, shows that, when a blue target
is detected, for example, on the left (V1N1Col2 neuron
emits spikes), the robot turns on the right (VISLN2 neuron
emits more spikes than the VISRN2) and consequently the
robot does not reach the target: in fact, the TLN1Col2 and
TRN1Col2 neurons are not excited.

Multimedia materials on the experiment are available on
line [4].

VI. CONCLUSIONS

In this paper a bio-inspired control algorithm for the
navigation of a mobile robot, based on Spiking Neural
Networks, have been discussed.

The purpose of the implemented algorithm is to allow the
robot to navigate avoiding obstacles and reaching or avoiding
specific objects that represent the targets for the robot, thanks
to the interaction with the environment.

The proposed neural structure functionally inspired by the
olfactory learning in the MBs in insect has been applied to
control a bio-inspired hybrid robot, named TriBot.

The experimental results show the efficiency of the algo-
rithm. The system is able to learn the association among
visual features and basic behaviors through the STDP rule
in a reasonable time. The approach presented in this work
can provide efficient navigation control strategies with very
simple unsupervised learning mechanisms. Further works
will include new sensors and basic behaviors that will allow
to extend the neural architecture.

The learning structure is envisaged to be used within an
insect brain computational model to solve more complex
tasks in a real life scenario.
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